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Abstract:

The necessity of modelling is well established since the structural identification of a process is essential
in analysis, control and prediction. In the past, limited information on system behaviour has driven
researchers to introduce modell ing techniques with a broad range of assumptions on systems'
characteristics. Statistical modell ing methods, which are based on, these assumptions have generally
failed to fully capture the dynamic characteristics of the process. The development of neural networks
have partly improved the modell ing procedure but their high degree of subjectiveness in the definition
of some of their parameters as well as the demand of long data samples remain significant obstacles.
On the other hand, real world systems like financial markets have a high degree of volatili ty and the
util isation of long data samples tends to remove and, in effect, filter the dynamic characteristics of the
process. The Group Method of Data Handling (GMDH) belongs to the category of inductive self-
organisation data driven approaches. It requires small data samples and is able to optimise models'
structure objectively. In this report the stages of GMDH development and a broad spectrum of GMDH
algorithms will be explored as well as a diversity of applications. A special study on the external
criteria - a key feature in GMDH - will be also presented. Finally some key differences between neural
networks and GMDH algorithms will be discussed.
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1. Introduction

Modelli ng real world systems is a difficult but essential task in control, identification and forecasting
applications. Economic, ecological and engineering systems are generally complex with limited
information on their underlying physical laws. Mathematical apparatus and assumptions about their
features are necessary for their structural identification. The majority of those systems are consisted of
subsystems with unclear and unknown interrelationships. In cybernetics the inherent behaviour of these
elements is not as important as the exhibitory behaviour of the system is. Input and output variables of
the system can be analysed, transformed and manipulated highlighting the system’s exhibitory
behaviour.

Complex systems have been characterised as black boxes where the only available information is the
number and nature of input – output variables. Their investigation follows the principle of the black
box concept according to which the internal mechanisms and relations amongst the elements of the
system should be ignored while concentrating on the study of the relationships between input-output.
Obviously, in the black box concept, the knowledge of the system can be extracted exclusively from
the data. Either deductive or inductive sorting methods can be applied to identify and process this
knowledge. Generally, deductive techniques should be applied on simple problems where the theory of
the system is well established and physical laws can be applied to identify a physical model. Most
engineering systems belong to this category while problems of economical or ecological nature due to
the fuzziness of their objects require inductive sorting out methods. A first approach in modell ing
procedure with data was based on the well-known statistical methods and statistical regression analysis.
These methods require a priori assumptions about the laws governing the data as well as their
properties. These assumptions could reflect only special states of the object and therefore may produce
inaccurate models.
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The rapid development of artificial intelligence and neural networks in the last two decades due to the
introduction of back propagation learning algorithms have urged a significant number of researchers to
investigate its application in modelli ng tasks. However, neural networks despite the small number of
assumptions in comparison to statistical methods require still a significant amount of a priori
information about the model’s structure. Experts should decide on the quali ty and quantity of input
arguments, the number of hidden layers and neurons as well as the form of their activation function.
Such an approach requires not only the knowledge about the theory of neural networks but also the
rules for the translation of this knowledge into the language of neural networks [1]. The heuristic
approach that follows the determination of network architecture corresponds to a subjective choice of
the final model, which in the majority of the cases will not approximate the ideal. Sarle [2] comparing
the behaviour of neural networks in data analysis to the statistical methods claims that it is not
appropriate to be viewed as competitors since there are many overlaps between them.

A new approach, which attempts to overcome the subjectiveness of neural networks is an inductive
approach, based on principle of self-organisation. An inductive approach is similar to neural networks
but is unbounded in nature, where the independent variables of the system are shifted in a random way
and activated so that the best match to the dependent variables is ultimately selected [3]. Following
such a procedure there is a gradual increase of complexity and the optimum model is found with
respect to the popular incompleteness theorem issued by Gödel in 1931. According to that, it is in
principle impossible to obtain a unique model of an object on the basis of empirical data without using
an external complement. The existence of a single optimum model is based on the principle of self-
organisation which states that when a model’s complexity gradually increases, certain criteria (i.e.
selection criteria) or objective functions that hold the property of external complement pass through a
minimum [4].

In inductive learning algorithms the experts have a limited role. Man communicates with the machine
not in the difficult language of details but in a generalised language of integrate signals like selection
criteria or objective functions [5]. On the other hand in deductive methods the dominant role belongs in
the experts with computers being simple large calculators. The inductive approach have a similar
concept to that of evolution introduced by Holland [6] where a number of solutions is created and an
external criterion plays the role of finding the fittest.

2. The Group Method of Data Handling

Generally, the connection between input-output variables can be approximated by Volterra functional
series, the discrete analogue of which is Kolmogorov-Gabor polynomial.
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m) the vector of
weights. The Kolmogorov-Gabor polynomial can approximate any stationary random sequence of
observations and can be computed by either adaptive methods or a system of Gaussian normal equation
[7]. However, in real world systems two problems forbid its establishment as an identification method.
In majority of cases the vector of independent variables is long and incomplete while the set of
observations is small . Furthermore, the computation time for solving all the necessary normal equations
increases, as the input vector becomes wider.

Ivakhnenko [7], inspired by the form of Kolmogorov-Gabor polynomial, developed a new algorithm,
which is called the “Group Method of Data Handling (GMDH)” . Following a heuristic and perceptron
type approach, he attempted to resemble the Kolmogorov-Gabor polynomial by using low order
polynomials for every pair of the input variables. He proved that a second order polynomial (i.e.

Ivakhnenko polynomial: 2
5

2
43210 jijiji xaxaxxaxaxaay +++++= ) can reconstruct the complete

Kolmogorv-Gabor polynomial through an iterative perceptron type procedure. This approach offers
better accuracy due to its perceptron type structure, which enables the classification of the information
into “useful” and “harmful” , requires a fewer number of observations and therefore reduces
computation time. The GMDH method belongs to the category of heuristic self-organisation methods,
where the black box concept, the concept of connectionism and induction are applied [8]. Ivakhnenko
[9] claims that the self-organisation is necessary when it is impossible to trace all i nput-output
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relationships through an entire system that is too complex. This abili ty made GMDH algorithms
appropriate modell ing procedure for real world systems.

During the modell ing procedure, GMDH algorithm involves four heuristics that represent the main
features of GMDH theory [9].
(i) collect a set of observations that seems to be relevant to the object
(ii ) divide the observations into two groups. The first will be used to estimate the coefficients of

model while the second will separate the information embedded in the data into either useful
or harmful. Strictly speaking: “no partition of the data, no GMDH” [10]

(iii ) create a set of elementary functions where complexity will increase through an iterative
procedure producing different models

(iv) according to Gödel’s incompleteness theorem, apply an external criterion to choose the
optimum model.

The GMDH has developed rapidly, particularly during the eighties where its theoretical background
was formulated [10]-[11]-[12]. Ivakhnenko [10] points out that GMDH algorithms have been primarily
developed on the basis of numerous computational experiments and in analogy to the justification of
the Monte Carlo methods of statistical trials, multiple repetitions of an experimental result constitute its
proof. Stepashko et al. [13] add that due to the absence of a satisfactory mathematical foundation for
the model under other than statistical assumptions, the GMDH theory was developed as a division of
regression analysis in its early steps. This lack of theory has been criticised by the researchers and a
number of theoreticians have attempted to justify some of the aspects of GMDH theory like the
convergence of multil ayer algorithm [14]. Furthermore, Ivakhnenko & Kocherga [15] present a series
of theorems for long-range two levels forecasting with GMDH, which can serve as a basis for a future
general theory in that class of forecasting tasks.

Despite its limited theoretical background, the extensive number of GMDH algorithms and their abili ty
to model il l-defined objects with satisfactory accuracy over other known statistical methods, have
proved and strengthened its position as an appropriate non-linear method for structural identification
and prediction tasks. The wide range of partial descriptions allows its application in different fields of
modelling procedures as well as producing a respective number of GMDH algorithms.

3. GMDH Algorithms

The wide development of GMDH theory has led to a broad spectrum of algorithms with each one of
them corresponding to some specific conditions of a particular application. GMDH algorithms may
differ by the type of elementary function, the way of model’s structure complexing, the external criteria
or the type of modell ing task itself. The choice of the algorithm depends on the level of noise in the
data, their sufficiency as well as their type (e.g. continuous or discrete). The first GMDH algorithms
had adopted three different types of elementary functions like, probabili stic graphs, Bayes’ formulas
and second order polynomials [9]. The rapid development of GMDH theory and the broad spectrum of
its algorithms have resulted to a different classification approach where GMDH methods are grouped
into two main categories, the parametric and non-parametric algorithms. The level of language
representation of the system is used to distinguish between them. Parametric algorithms are
recommended to describe systems characterised by either exact or low variance noisy data. On the
other hand, in the case of il l-defined systems and high variance noisy data, the application of non-
parametric algorithms is justified.

Parametric algorithms have been classified further according to the type of activation function (partial
descriptions) or the type of model structure complexity. Combinatorial algorithms, also known as
single-layer self-organising algorithms, perform an exhaustive search between all candidate models.
Multilayer or iterative algorithms apply an iterative procedure, which increases model complexity
while an external criterion identifies those models to be progressed in the next layer. In multil ayer
algorithms there is no exhaustive search of all candidate models but the computation time is reduced
and the number of independent variables to be processed becomes larger. With respect to the type of
activation function, GMDH algorithms are distinguished into polynomials, harmonic, multiplicative-
additive and fuzzy. All these algorithms will be thoroughly discussed in the following sections. The
adaptive nature of GMDH algorithms has allowed modifications of the basic GMDH so that they can
better compensate for peculiarities in each and every application separately.
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3.1 Combinatorial Algorithms (COMBI)

The classical combinatorial GMDH algorithm generates models of all possible input variable
combinations and selects a final best model from the generated set of models according to a chosen
selection criterion. Ivakhnenko et al. [16] describe combinatorial algorithm as a method of complete
mathematical induction since not any possible model is missed to consider. Combinatorial algorithm
sorts the models by gradually increasing the terms from 1 to n (i.e. the number of arguments) while an
external criterion will indicate the optimum solution between models with the same complexity. The
external criterion will have a minimum value in the plane of complexity vs. selection criterion, which
corresponds to the optimum non-physical model.

The main disadvantage of combinatorial algorithms is related to computer capacity. Due to the full
sorting out procedure the computation time is high and therefore the number of terms and power in the
final model will be limited. Ivakhnenko et al. [16] propose two different ways to increase the number
of terms in the final model up to 23-25 from the 18 that was initially proposed. The first approach
indicates the calculation of the coefficients in the successfully obtained model with the help of a
bordering method, which allows the processing of up to 25 variables. A second approach is known as
the method of truncation of the sorting triangle according to which every model with more than a
specified number of terms (17 or 18) is discarded from the sorting out procedure. Obviously, the
second method violates the property of exhaustive searching for the optimum model but allows the
processing of more complicated models. Problems with computer resolution were found in multilayer
algorithms also. Ivakhnenko et al. [17] introduce a GMDH algorithm that achieves an increase in the
input domain from 80 up to 120 by selecting randomly the number of pairs of input arguments.
However, multilayer algorithms can produce models with up to 1000 terms in the final solution.

An additional shortcoming of combinatorial algorithms, which is common to all polynomial GMDH
algorithms is the biased estimates of coefficients due to the method of least squares. Ivakhnenko et al.
[18] argue that the method of instrumental variables could replace least squares producing less biased
estimates. The advantages of single layer self-organising could be summarised in their simplicity and
their ability to perform complete sorting of model structure. However, as the number of terms increases
so does the number of required observations, which restrict them from ill-defined systems characterised
by incomplete input vector and small number of available observations.

3.2 Multilayer Algorithms

The Multilayer GMDH algorithm was the first algorithm to be introduced by Ivakhnenko [9]. Its
structure is very similar to that of multilayer feedforward neural networks but the number of layers as
well as the number of nodes is objectively defined by an external criterion in accordance with the
incompleteness theorem. Looking at figure 1 it is clear that in the first layer the number of nodes is
equal to the number of inputs and for the subsequent layers it is equal to the number of pairs of
variables for the characteristic vector (i.e. input variables). The number of hidden units can be either
prespecified or change from layer to layer according to a threshold value of the external criterion.
Multilayer algorithms do not perform an exhaustive search amongst all the candidate models but if the
number of selected models in every layer is large enough, the optimum solution will never be lost [4].

The most popular type of activation function is the second order polynomial but a number of
alternative partial descriptions have been also tested. Stepashko [19] provides a list of partial
description as well as external criteria that have been used by researchers. Despite the popularity of
polynomial partial descriptions, many researchers have applied different types of activation functions
that enable them to transfer the concept of GMDH into different fields of research. Dimitrov [20]
replaced the polynomial descriptions with probability distributions transferring the concept of GMDH
into probabilistic models. In the probabilistic domain, the Kullbank approach is the analogue to the
Kolmogorov-Gabor polynomial, stating that a nth-order probability distributions can be approximated
by distributions of lower orders. The convergence of this algorithm is ensured by the theorems of
convergence for the Kullbank approach. Additionally, Patereu et al. [21] presented the principle of self-
organisation into pattern recognition designing a Bayessian type algorithm for classification where its
main steps are analogues to GMDH.
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Figure 1. Multilayer GMDH Algorithm

A wide range of polynomial activation functions has been suggested to either increase accuracy or
make the algorithm more compatible with the features of a specific application. Multilayer GMDH
algorithms are superior to combinatorial algorithms with respect to the maximum number of terms in
the final model. Ivakhnenko et al. [18] compared them and concluded that in multilayer algorithms
there is an exponential growth to the volume of computation while increasing the number of variables
in the data sample. They argued that it is better to apply them in cases where the number of input
variables is small like underdetermined and ill-defined systems. However, they can only form single
output equations, which restricts them to applications where the output is known a priori.

Triseyev [22] overcomes the above drawback, by designing a multilayer algorithm for multi-output
systems. The only condition is that the output should be known a priori. Experts make the decision
upon which variables of the system should be included in the output vector however, Ivakhnenko in
[23] proposes some useful hints about that problem. Triseyev claims that it is better to underdetermine
the system rather than overdetermine it because it is ensured that the system’s laws would be exposed
even though the accuracy may be lower. Polynomial partial descriptions of all the outputs are
constructed and a rule R will select the system of equations, which approximates them best. The rule R
is introduced to regulate the formation of the systems of equations since it is computationally expensive
to perform complete sorting of all systems of equations. A distinctive feature of this algorithm is the
introduction of an additional criterion in every layer (i.e. balance of variables criterion), which takes
into account the forecasting background and decides on the candidates for the system of equations.

Yurachkovskiy [14], investigating the theoretic background of multilayer algorithms, proposes two
properties that should be held by every multilayer algorithm. Firstly, the search in the set of structures
must proceed in the direction of increasing complexity as well as the greatest degree of terms and
secondly for any admissible structures a path leading to it from the previous layers must exceed. The
“pr ecision algorithm” which is a multilayer two-stage algorithm that satisfies these properties is also
proposed by the author. In the first stage the search is limited to monomials with increasing powers. At
the second stage the search is extended to all possible models having one or two terms within the
partial descriptions. Ivakhnenko et al. [16] classify multilayer algorithms into those with calculation of
remainders after each selection layer and those without calculation of remainders. In the latter class, the
external criterion has a monotonic structure where in the plane complexity vs. criterion the area around
the optimum models being flat. The application of “left corner rule” is proposed to overcome it
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however, the subjectiveness of choice is increased. According to the left corner rule, at each layer the
model is to be chosen not only among the models of given layer, but among the models of last two
layers. The solution of the above two algorithms can coincide only for a rather large sample of initial
data and in case of using the minimum bias criterion.

Multilayer GMDH algorithms have been applied in a broad spectrum of application and several
modifications have been designed to increase their accuracy. In a later section all these modifications
will be presented as well as the proposed solutions to their drawbacks, like multicollinearity,
complexity and overfitting.

3.3 Harmonic Algorithms

Harmonic GMDH algorithms have been designed for oscillatory and periodic processes. Their
functional form can resemble that of either combinatorial or multilayer algorithms where polynomial
terms are replaced by harmonic components in the form (2).

tataay ωω cossin 210 ++=                                                                                                                    (2)

Stepashko et al. [24] introduce a polynomial GMDH algorithm to predict multidimensional cyclic
processes via linear two level difference models, concluding that it is efficient for the construction of
two level models of various natural cyclic processes. However, due to the periodic nature of such
systems the utilisation of harmonic components should be explored. Vysotskiy et al. [25] describe two
harmonic algorithms with prespecified non-multiple discrete frequencies. The balance of variables
criterion replaces the regularity criterion since it can heuristically find a property of the process that
holds exactly in both interpolation and extrapolation intervals. A modified form of the criterion
appropriate to harmonic processes is also given.

In the above harmonic algorithms, the number of frequencies is prespecified which generates a
significant high possibility of excluding the optimum harmonic. An increase in the number of
harmonics should be avoided due to high computational load. Ivakhnenko et al. [16] propose a
modified harmonic algorithm which allows the expression of frequencies and amplitudes of a process
model as a sum of harmonics with non-multiple frequencies. A similar modified harmonic algorithm
uses sum of harmonics where the frequencies are not assigned in advance but are analytically
determined in order to become close to the true harmonics of the oscillatory process. Harmonic
components have been also applied in multilayer algorithms without calculations of remainders where
the spectrum of frequencies is expanded by using non-linear functions.
Sarychev [26] proposed a different form of harmonic component (3), which create a sequence of
har ����� � ���
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A priori information about elements of the system and their behaviour may indicate the form of
functional descriptions. Ivakhnenko et al. [27] observe that some processes exceed both an exponential
and harmonic behaviour and therefore propose an appropriate GMDH algorithm, which can perform
either an exhaustive or a limited search.

A list of problems with respect to the estimation of the coefficients of the harmonic components is
presented in [28]. Generally, least squares method cannot be applied in these algorithms as the§�¨5©5¨�ª�«¡¨¬�®�¯2®h°�±�²8±�¯�³4´ µ�¶2·a¸�¹�º�»8µ�¼ º�·�½º�¹�º�¾�¿�¼ º�·�µ�¶2¿ ÀÁ¼ ºÂ»�Ã�·aÄ�¹5½5·�¿�Å�ÆÈÇ�¼ º�µ�¿�·�É�Ê�µ�»8¼ ¹�º�ËAÌ5Ã�·�¿ ·�Í5Ã�¹�Î�µÂÏ Ð�Ñ�Ò
proposed a new parameter estimation scheme where least squares have been replaced by orthogonal
regression. Additionally, a formula is given calculating the maximum number of data under which least
square estimates will not be considered as inconsistent. A complete review of GMDH harmonic
algorithms can be found in [16] where the analogy between polynomial and harmonic algorithms is
also highlighted.

3.4 Fuzzy Algorithms
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In the conventional GMDH method the deviation between the observed values of the output and its
estimates is supposed to be Gaussian-distributed and hence linear regression analysis is used to
estimate the parameters. However, such an assumption is often violated and the method of least square
estimates is not appropriate. Furthermore, the majority of real world systems seem to follow Zadeh’s
principle of incompatibility and fuzzy theory is a more appropriate approach in modelling procedure.
Hayashi et al. in [29] attempt to represent input-output relationships with possibility models where the
parameters are fuzzy numbers. The structure of the GMDH algorithm remains the same but fuzzy
parameters are used in partial descriptions while possibilistic linear regression is applied to find them.
The above algorithm is one of the first applications of fuzzy methods in GMDH theory and this is
where Japanese researchers have focused their attention in the recent years. Fuzzy GMDH algorithms
have a structure similar to that of conventional algorithms but models are replaced by fuzzy rules.
Matushita et al. [30] present a GMDH algorithm that follows the principle of a hierarchical fuzzy
modelling method. It is able to identify comprehensible rules searching simultaneously more potential
structures of fuzzy models while avoiding the exponential increment of fuzzy rules for multi-input
systems.

Yokode et al. [31] point out that fuzzy rules can be obtained by either expert knowledge or numerical
data using neural networks. However, when applying neural networks, an optimisation problem
appears. This problem can be eliminated by applying fuzzy if-then rules with a certainty factor and
introduce a multilayer GMDH algorithm where polynomial descriptions are replaced by these rules
with a fuzzy reasoning method. Its main advantage is that multi-input systems using this multilayer
structure of GMDH with the pair of fuzzy sets in each fuzzy rule avoid an explosion in the number of
rules.

A number of Japanese researchers during the last decade motivated by the similarities between neural
networks and GMDH designed a series of multilayer algorithms that were introduced as GMDH neural
networks. The main characteristic of these algorithms is the adoption of internal criteria in the selection
process, which do not require the partition of the data sample. Ivakhnenko [32] criticised this work
arguing that one of the main features of GMDH theory is the application of principle of external
complement and therefore any algorithm that does not satisfy this principle should not be characterised
as a GMDH algorithm. However, Ichihashi et al. [33] and Nagasaka et al. [34] proved that Akaike’s
Information Criterion (AIC), as well as the differential minimum bias criterion (DMC), are capable of
selecting an optimum model and therefore the number of hidden layers of GMDH NN. In this review
we will accept the argument made by Ivakhnenko [32] and call all these algorithms as GMDH-type
NN. Details of these algorithms will be presented later but at this point we shall focus on those which
appear to contain a fuzzy or neurofuzzy approach.

Nagasaka et al. [35] develop a neurofuzzy GMDH algorithm that seems to perform identification tasks
better than the conventional GMDH. The name “neurofuzzy” derives from the utilisation of Gaussian
Radial Basis Functions as partial descriptions. According to Brown & Harris  [36] an RBF can
reinterpreted as both a simplified fuzzy reasoning and a three layer NN, therefore the GMDH type NN
can be called as NF-GMDH type NN. However, the main shortcoming of the algorithms described in
[31] and [35] is the limited number of fuzzy model structures among a wide range of potential
structures. Ohtani et al. [37]-[38] propose a method that eliminates “harmful” weights of a NF-GMDH
network. This technique will be able to identify the optimal architecture of a GMDH type NN. The
proposed method is a two-stage technique where, in the first stage, a destructive technique (i.e.
structural learning with forgetting) is applied that constantly eliminates weights with less influence on
the output. In the second stage, for every input of each neuron the Minkowski’s norm is calculated
which identifies the links (i.e. pair of inputs) that should be deleted.

Park et al. [39] indicate that fuzzy polynomial neural networks can be considered as a means to
overcome the weakness of mathematical modelling methods. Fuzzy rules are applied in the first layer
of the NN while polynomial partial descriptions are explicitly applied in the subsequent layers.
Comparing fuzzy polynomial neural networks to other fuzzy modelling methods, it is concluded that
they are able to produce better results in most of the cases considered. A software package known as
“Design” is produced by Zaychenko et al. [40], which implements a fuzzy GMDH algorithm. The
proposed algorithm uses partial linear descriptions. However, non-linear terms can be included if they
are a priori transformed into linear approximations. The coefficients of partial descriptions are not
calculated by least squares but are the centres of triangle fuzzy numbers and their width.
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3.5 Active Neurons

Similarities between the structure of neural networks and GMDH algorithms have urged researchers to
explore areas where these two concepts could combine. Inductive methods cannot substitute the
necessary analysis of causes of events by means of theoretical systems analysis and hence a pragmatic
solution to the model building problems should be explored in a union of deductive and inductive
methodology [41]. Ivakhnenko et al. [42] propose such a combined method, which extend the theory of
self-organisation from isolated models to active neural networks.

The proposed algorithm is known as “neural networks with active neurons” where in place of passive
neurons GMDH algorithms are applied. Neural networks with active neurons have a two fold
multilayered structure since neurons themselves are multilayered and can be united into common
matrix in a multilayred way [8]. These networks have the ability to simulate in a more suitable way the
structure of human brains, proving that neural networks can be characterised as an accurate description
of human brain. Generally, statistical learning networks (like GMDH algorithms) follow two different
strategies for the synthesis of the network depending on whether the structure of the network is fixed or
allowed to evolve during the synthesis [43]. In the latter case no a priori information about the target is
needed and the network architecture is chosen objectively avoiding the overfitting problem. It is also
proved that least squares estimates can find the network architecture better than recursive algorithms
do.

Both multilayered and combinatorial GMDH algorithms can be used as active neurons. Ivakhnenko
[44] proposes a modified combinatorial algorithm as active neurons, which is shown to increase
accuracy and reduce computation time. The input dimension is extended by adding pair of inputs in
several forms such as square roots as well as the inclusion of outputs from the previous layer into the
new layer. Additionally, a variables protection system is developed according to which experts will
propose a number of variables that should be definitely included in the final model and these will never
be eliminated during the sorting out procedure. Finally, a discrimination criterion will calculate the
quality of every model attempting to narrow the space of candidate solutions. The narrowing of
argument set is realised by the exclusion of arguments, which are not included to the set of second
layer equation arguments. In that way only a number of the best variables will continue in the sorting
out procedure until the minimum of the criterion is achieved.

A neural network with active neurons has the ability to select the most relevant input arguments thus
increasing its accuracy in prediction tasks and overcoming the inscrutability of neural networks with
logistic or other passive neurons [45]. Additionally, the accuracy is increased since the output of active
neurons generates new variables, which can be used as a new factor in the next layer of neurons and the
set of input factors can be optimised at each layer [46]. Neural networks with active neurons have been
applied in prediction of economic and ecological systems where their superiority is clear [47]-[43]-
[44].

3.6 Non Parametric Algorithms

Clusterization is a weak mathematical method of modelling, which in accordance to the law of
adequacy of an object established by Beer [48], it is the most appropriate technique for modelling ill-
defined, complex real world systems. The development of non-parametric GMDH algorithms have
been motivated by the weakness of parametric algorithms as well as the advantage of a weak
mathematical method to overcome effectively some difficulties of underdetermined tasks of
experimental systems analysis (i.e. Nalimov’s approach) [49]. Weak methods are able to produce
descriptions of objects whose properties are compatible to the properties of those with fuzzy
characteristics, overcome difficulties caused by great size of initial data and allow the utilisation of
internal criteria in model exhaustion and clustering. This enhances the reliability of coefficients and
does not require the division of data samples into two groups [50].

Cluster analysis is a three dimensional problem where the width of cluster, the length and their
numbers must be found. Generally, this problem can be solved by either a deductive or an inductive
sorting procedure [51]. Deductive methods are subjective since they are totally based on detailed
instructions from the person performing the clustering as well as his/her idea about the object
behaviour. On the other hand inductive methods of clustering, based on the principle of self-
organisation, are objective and hence more appropriate to such modelling tasks. Ivakhnenko et al. [52]-



9

[53] argue that the analogy between self-organisation of models and self-organisation of clusters
enables the transfer of the concept of a sorting model to that of sorting clusters. Computers can
successively replace human beings in clusterization and using an external criterion objectively divide a
given set of objects representable by points in a multidimensional space of attributes, into a given
number of compact groups or clusters. Ivakhnenko et al. [54] claim that clusterization should be
accurate by successfully dividing the observational data and consistent so that hold for all possible sets
of data obtained on the same observed object. Humans may not be able to do this but computers
following the principle of self-organisation can do it easily.

The objective computerised clusterisation (OCC) algorithm has the abili ty of performing objective
clusterization as well as the orientation to search for those clusterizations that are unique and optimal
for each level of noise variance [53]-[55]. The computerised clusterization procedure is affected by the
completeness of the source data representation. If it is complete, a polynomial GMDH will i ndicate the
optimal composition of input vector and then the clusterization procedure will t ake place in the
combined input-output space [53]. In case of incomplete data representation where the dimension of
the space of the goal function is not known, either experts will indicate it, or the Korhunen-Loeve
orthogonalised expansion will be used [55]. Another important aspect in clusterization is the procedure
of finding the effective ensembles of attributes and Ivakhnenko [55] proposes three different
techniques. The first approach involves sorting of all possible clustering of different ensembles of
attributes but is clearly time consuming. The second approach involves the utilisation of a combi-
GMDH to find the most effective arguments, while a third approach introduce the utilisation of the
correlation algorithm of “Wroclaw taxonomy”, which is strongly recommended in cases where the
length of data is less than half of the number of attributes. According to Wroclaw taxonomy algorithm,
the features are ordered according to their efficiency and then exclude them one by one in the process
of optimisation of the event forecast algorithm to find the optimal feature set [62].

The selection of optimum clustering is based on the minimum of consistency criterion. However in
[56] it is claimed that the application of a regularisation criterion into a third independent set of
variables can avoid false clusterings which may be indicated by the consistency criterion. Ivakhnenko
et al. [57] propose the util isation of a balance of variables criterion where the samples are partitioned
into two levels (e.g. N and N/2 – 1) instead of two subsamples. For each level a different clusterization
takes place and the one, which minimise the balance of variables criterion is chosen. In contrast, similar
to parametric GMDH algorithms, an auxiliary criterion like the symmetry regularity criterion will
ensure the regularisation of solution [50]. In the same article it is pointed out that despite the way that
clustering is found it is important to test if the selected clustering corresponds to the properties of the
real. This can be tested by the multirow theory of statistical decision algorithms, which will improve
the selected clustering so that it becomes closer to the real. Ivakhnenko et al. [58] highlight that the
basic OCC fails to find an optimal clusterization when the constructed dipoles  (i.e. a graph that
connects two closest points) are large and a modified OCC (modOCC) is proposed. The modOCC is
based on the calculation of the balance criterion of the clusterizations obtained by constructing two
trees. One the initial data sample and the other on a sample the elements of which are calculated by a
weighted summing formula. The weighting summing formula takes into account both the initial matrix
of data and the matrix of each row.

Non parametric algorithms have been applied in a variety of financial applications [59] and clustering
has been a more efficient method for long range prediction [51]. The reasons for this are the problems
of estimating coefficients for the difference models which are not well defined since the number of
variables is usually larger than the number of observations. Additionally, the weak mathematical
language for the description of an object is required for solving the problem of maximal increase of the
limiting achievable lead-time for forecasting random processes and events. Muller [49] points out the
advantage of cluster analysis is, in general, to provide more exact predictions than parametric
algorithms do, which will not be as detailed as the latter. However, it would be useful to apply a
combination of those two where GMDH type sorting out algorithms will be used to validate the width
and number of clusters.

3.7 Method of Analogue Complexing

In parametric GMDH algorithms where regression analysis techniques are used in the parameter
estimation, it is essential to include all relevant regressors in the input vector. The exclusion of
essential regressors will appear as noise and will effect the model performance. In the majority of real
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world systems is impossible to know in advance the complete set of regressors so parametric GMDH
algorithms usually fail. Non parametric GMDH algorithms are appropriate modelling methods to
system with fuzzy characteristics and limited information since the equal fuzziness of the outputs is
reached automatically if the output itself is used for forecast [8].

The method of analogues, which satisfy the above arguments have been successfully applied in
meteorology in the past. A long history of the output under investigation is searched in order to find a
state (i.e. pattern) which will be similar to the current known as reference analogue. Then the
continuation of that analogue in the history can be considered as the next state of the output (i.e.
reference analogue) as well. Ivakhnenko et al. [60] introduce the concept of induction into the method
of analogues where the length and number of analogues in the analogue group is objectively chosen by
means of an objective computer clusterization (OCC) algorithm. A significant disadvantage of that
procedure is the requirement of a long prehistory as well as the identification of one very accurate
analogue. The combination of a group of analogues may increase its accuracy and eliminates the above
drawback. The method of analogue complexing involves four basic steps. Parametric GMDH will be
applied to reduce input dimension, the analogues should be transformed so that stationarity is fulfilled,
the most similar analogues will be selected according to a proximity criterion and finally analogues will
be combined by using a GMDH algorithm to determine the parameters of the complexed analogues [8].

The Euclidean distance for short-range predictions and the canonical correlation coefficient for long-
range predictions can be the proximity criterion that will determine the degree of similarity between the
candidates of analogue patterns in prehistory [61]. The combination of analogues can be done by either
applying a combinatorial GMDH using a consistency criterion or following a different method based
on the extrapolation of forecasting space by spline functions [61]-[62]. The basic interval of data is
subdivided in subintervals and different functions are found in every subinterval. Then, these functions
are joint together at the interval endpoints in such a way that a certain degree of smoothness of the
resulting functions is guaranteed. The latter method involves an exponential factor which value cannot
be optimised but is subjectively chosen and it is proposed to be taken smaller by one the dimensionality
of the analogue space. Regarding the number of complexed analogues there is no restriction but it has
been found that more than three do not significantly improve the accuracy [61]. Ivakhnenko et al. [63]
point out that with respect to the selection criterion used by Combi algorithm to find the combination of
these analogues two different approaches could be followed. In the exactness approach a cross-
validation criterion can be applied while in a robust approach the criterion of balance of discretization
is preferred.

A key sensitive issue in the method of analogue complexing is the requirement of stationarity. Using a
stationary series coming from the difference between the trend and actual series can solve this problem.
The trend function can be found in an objective way by applying a parametric GMDH algorithm [49].
However, due to the high dependence of analogue complexing on the selected trend function an
alternative four-step procedure is described in [64]. Due to the evolutionary nature of many processes
like financial systems, it is possible for similar patterns to have different mean, standard deviation and
trends therefore the choice of most similar patterns in past is a difficult task. Lemke and Muller [64]
overcome that difficulty by measuring the “similarity” between the reference pattern and a transformed
pattern which describes the difference between the similar analogues characteristics. The transformed
pattern will be a linear combination of the original pattern where least square method will be used for
parameter identification. As measurement of similarities between two patterns, the total sum of squares
obtained by least squares estimation of unknown parameters is considered.

According to [64] the combination of analogues can be difficult in case of small patterns length (i.e.
patterns consisted by less than ten observations) therefore it is proposed to use the weighted mean of
the continuations of the selected analogues. Two alternative methods are proposed for the combining
procedure in [65]. The first is the “rigid complexing” where a specific form for estimating the values of
the weights is given. The second is the “relaxed complexing” where the parameters of the rigid
complexing are slightly varied and according to the forecasting variance criterion RR (i.e.
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the optimum values are obtained. The rigid approach will produce values close to the optimum and the
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relaxed method will slightly improve its prediction accuracy. However, the authors argue that the
forecasting accuracy can be improved further by constructing a neural network with active neurons. In
that case the active neurons will follow the method of analogue complexing.

4. GMDH vs. Neural Networks

In the early stage of the development of GMDH theory the similarity between neural networks and
multilayer GMDH algorithms had been highlighted. Ivakhnenko in one of the introductory articles
claims that since the differences between perceptron and GMDH are neither significant nor
fundamental it is appropriate to call GMDH systems as “systems of perceptron type” [9]. Generally,
either deductive logical mathematical techniques or inductive sorting out methods could solve
modelling complex objects [66]. According to Muller et al. [1], statistical methods, neural networks
and statistical neural networks are deductive methods that cannot identify complex objects because of
their requirement for a large amount of a priori information. On the other hand GMDH algorithms can
be considered as regression based method that combines the best of both statistic and neural networks
while embedding the very important additional property of induction [67]. Based on that property
GMDH algorithm are capable of overcoming the drawbacks of NN while statistical neural networks
can partly solve them.
Muller et al. [1] and Madala [3] have thoroughly investigated the differences between deductive and
inductive methods. The major differences can be summarised in the ability of GMDH to objectively
select the optimum model, avoids overfitting problems and selects the most relevant input variables. In
table 1 the features of both NN and self-organising modelling in a variety of categories can be found.

Neural Networks Self-Organising Modelling
Data analysis Universal approximator Structure identificator
Analytical model Indirect approximation Direct
Architecture Preselected unbounded network

structure,
Experimental selection of
adequate architecture demands
time and experience

Bounded network structure
Structure evolved during the
estimation process

Network synthesis Globally optimised fixed network
structure

Adaptive synthesised structure

Threshold Threshold transfer functions Threshold objective functions
Self-organisation Deductive, given number of

layers and number of nodes
Inductive, number of layers and
of nodes estimated by minimum
of external criterion

Parameter estimation In a recursive way demands long
samples

Estimation in batch by means of
maximum likelihood techniques
using all the observational data,
extremely short samples

Optimisation Global search of a highly
multimodal surface, result
depends on initial solutions, slow
and tedious, requiring the user to
set various algorithmic
parameters by trail and error, time
consuming techniques

Group method of data handling,
not-time consuming technique
adaptively synthesised networks
are more parsimonious, parts of
the network which are
inappropriate are automatically
not included

On/off line Observation is available
transiently in a real-time
environment

Data are usually stores and
repeatedly accessible

Regularisation Without, only internal
information

Estimation on training set,
selection on testing set

A priori information knowledge Without transformation in the
world of neural networks not
usable

Can be used directly to select the
reference functions and criteria

Knowledge Needs knowledge about the
theory of neural networks

Necessary knowledge about the
task and the class of system
(linear, non-linear)

Convergence Global convergence is difficult to Existence of a model of optimal
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guarantee complexity
Computing Suitable for implementation in

hardware using massively parallel
computation, for ordinary
computers insufficient

Efficient for ordinary computers
but also for massively parallel
computation

Feature General-purpose, flexible, non-
linear (especially linear) static or
dynamic nonparametric models

General-purpose, flexible linear
or non-linear, static or dynamic
parametric models

Table 1. Comparison of neural networks and self-organising modelling

The similarities between the structures of NN and GMDH have urged Pham and Liu in [68] to produce
a GMDH neural network where N-adalines have replaced the Ivakhnenko polynomial in every
processing unit. N-adalines are adalines with second order non-linear preprocessors the weights of
which correspond to the polynomial coefficients of the original GMDH network. Furthermore, the
Widrow-Hoff learning rule and not the least square method is applied to estimate the weights.
Similarly, neural network with active neurons is another example of the combination between neural
networks and GMDH theory. The modelling ability of neural networks and GMDH has been tested in a
number of applications but the conclusions do not indicate a clear winner. Madala [3] observed that
GMDH produce better results in an identification task of linear systems but logistic neural networks
were better in the non-linear case. On the contrary, Parker and Tumala [69] claim that GMDH
performed better in non-linear systems than neural networks do.

It is clear that there is no universal accepted method and the choice of the most appropriate technique
depends on the application itself, the level of noise within the data and the fuzziness of the object.
Muller in [41] strongly recommends a union of deductive and inductive methodologies as the only
pragmatic solution to the model building problem.

5. GMDH type Neural Networks

The basic features of GMDH theory are the partition of data sample into two subsamples, the evolution
of a partial description to the final model and the application of an external criterion, which value
passes its minimum when the optimum model have been found. The application of external criteria is
important in order to objectively identify the optimum model and Ivakhnenko in [10] point out in a
strict sense that “no external criterion, no GMDH”. Japanese and American researchers have argued
that this last feature is narrowing the range of applications for GMDH and attempt to apply criteria that
do not require data partition [70]. Ivakhnenko [32] criticises this work claiming that the application of
selection criteria that do not require partition of the data (i.e. internal criteria) can identify only physical
models. Ivakhnenko et al. [71] point out that these algorithms are deductive methods whose solutions
will coincide to that of GMDH only in case of complete input vector. On the other hand GMDH
algorithms as inductive algorithms can be applied in cases of noisy data and select non-physical models
in accordance to the Shannon’s theorem in communication. Muller et al. [1] classifies these algorithms
in the category of GMDH type NN since they satisfy the expression “the more complex the model is
the more accurate it is”.

On the other hand Tamura et al. [72] questions those basic features of GMDH (i.e. heuristics)
characterising them, as drawbacks that should be eliminated. A heuristic free GMDH algorithm is
proposed where the division of data is avoided, the number of selected intermediate variables in every
layer is not predefined and four different partial descriptions are applied to increase flexibility. The
Akaike’s Information Criterion (AIC) in the whole set of data is used as selection criterion while the
number of selected models is only limited by the computer resolution. Four different generators of
partial descriptions are used which include linear, second and high order polynomial as well as optimal
partial polynomials. The last type of generators can be either optimal partial polynomials in which
parametrically unstable terms in the second order polynomial are eliminated, or polynomials in which
redundant terms in the second order equation are eliminated by applying a stepwise regression method
using a test of significance for the training set.

Sawaragi et al. [73] proposed a slight modified “revised GMDH” algorithm where the AIC is replaced
by the prediction sum of squared criterion (PSS), while Yoshimura et al. [74] suggested its replacement
by the residual sum squared criterion (RSS). Testing the revised GMDH over linear regression methods
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it was proved that revised GMDH with RSS produced better results, while in revised GMDH with
either AIC or PSS, a number of inputs were eliminated despite their importance and high correlation to
the output. The revised GMDH has the advantage of using flexible partial descriptions but is also
computational expensive due to the large number of candidate models for every pair of variables and
the stepwise regression analysis for parameter identification. In [75] a stepwise regression recursive
algorithm is used for parameter estimation reducing the computational load. Furthermore, the
weighting error sum of squared criterions in forecasting horizon is used as a selection criterion, which
can identify a good property in each layer in the whole forecasting field and not only in the case that
the number of layers is prespecified as AIC and PESS do. The revised GMDH algorithm has been
compared to neural networks for the prediction of the magnitude of voltage of harmonics but failed to
produce better result [76]. On the other hand, in comparison to statistical methods and an optimal error
predictor (OEP) over long-range and short-range predictions, it was proved that GMDH provides better
results in short range prediction only. However, it does not show features of robustness to the change of
prediction lead times where OEP is superior [77].

Kondo [78] presents a modification of the revised GMDH with respect to the type of partial
descriptions generators. Two linear and non-linear generators are applied in the place of every
processing unit. Second order polynomials are replaced by third order polynomials and in one case
logistic function, which coeff icients are estimated by logistic regression analysis. The new revised
GMDH algorithms is investigated further by applying two different learning algorithms to update the
weights between the neurons of the GMDH type NN [79]. In the first algorithm logistic and
multivariate regression analysis are used to update the weights in accordance to the type of partial
generator. Both old (i.e. used to find the structure of network) and new (i.e. obtained after the
determination of structure) data are used. In the second algorithm only new data are used with
backpropagation algorithm to recalculate the coefficients between the neurons.

The algorithm has been tested against NN in a financial application proving that a 10-15%
improvement was achieved [80]. Additionally, Kondo et al. [81] introduce the utilisation of a feedback
loop in every layer that reduces the complexity of the final model. Using the feedback loop the output
neurons are not only combined with each other to the next layer causing a rapidly increase in
complexity but they are also combined with the input variables of the system so that complexity
increases gradually as well as the accuracy. Additionall y, the number of partial generators is increased
to seven. In [82] Kondo et al. propose to extend the number of arguments of partial generators beyond
two, proving that the accuracy in a medical recognition application have increased.

6. Modifications of GMDH

The objectiveness of GMDH algorithm and its satisfactory performance as a non-linear modell ing
approach has driven a number of researchers to investigate it further as well as test it in a broad
spectrum of applications. Their work has pointed either in the direction of providing a theoretical
background for the method or in modifications that address some of its weaknesses and problems.
Ivakhnenko admits that the theoretic base of GMDH has not been fully explored but similar to Monte
Carlo method its experimental results provide a satisfactory justification [10]. The weakness of a strong
theoretic foundation have been criticised by Van Zyl et al. [83] arguing that several aspects of the basic
GMDH approach seems to be unconvincing and unfounded. One of the problems discussed in [83], is
the justification of the functional form of the auxiliary variable in the balance of variables criterion,
which is a better selection criterion in cases that the table of initial data contains information about
several interrelated variables. The auxiliary function is a sum of system variables with given numerical
weights. It was proved that the results depend on the form of auxili ary function and even for the same
formula the results were different for minor changes in the coefficients. Additionally, there is a lack in
the rationale behind the choice of the linear form for that variable.

Despite the proof of the statement made by Ivakhnenko about the existence of a minimum in external
criteria as the complexity increases, Van Zyl points out that there is no satisfactory justification in the
question: “why this prediction to be more reliable than the others”. Therefore the theoretical basis
should be developed before the empirical data are introduced into the modell ing procedure.
Ivakhnenko’s claim that short sequence of data and the “environment” (i.e. input arguments –
activation function) are enough is unfounded without its theoretic justification. The correct selection of
the input vector, the complexity of final model, its consistency, the reduction of computational load are
some of the aspects in the basic GMDH that have been investigated in order to improve its accuracy
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and broaden its horizon of applications. Most of the proposed solutions have been designed and tested
for the multilayer GMDH algorithms but their application can be also extended to the combinatorial
algorithms.

Selection of Input Arguments
One of the main features of GMDH is its ability to objectively select the most appropriate input
arguments amongst a set of candidates. However, the identification of these candidate input arguments
is not straightforward and may effect its performance [84]. A large input vector will increase
computation time while the inclusion of redundant variables may reduce accuracy. The elements of
input vectors will be decided by the researchers and they should be as relevant as possible. The degree
of relevance to the target can be estimated by the correlation analysis [85]. The cross and auto
correlation function will not only reduce the input dimension but also indicate the number of lagging
arguments that should be included in the modelling procedure [86]. Krotov and Kozubovskiy [87]
accept the importance of cross correlation function pointing out that not only the Pearson correlation
coefficient that presuppose normal distribution of deviations but the rank correlation should be also
used [88]. Karnazes et al. [89] propose the selection of input arguments to take place according to a
clusterization procedure. An algorithm will sequentially examine a set of input data vectors and grows
clusters in a n-dimensional space. The final clusterization will detect operating regions in the
independent spaces, as well as noisy and non-stationary variables. Small clusters that lies outside of
large clusters will be attributed either to noise or non-stationary conditions and therefore will be
eliminated.

Ryoubou et al. [90] propose the introduction of Interpretative Structural Modelling (ISM) theory into
the GMDH algorithm in order to control the selection of input variables. The authors do not follow the
idea of considering the system as a black box concept and claim that the theory, experience and
intuition behind the system should be taken into account. Lemke and Muller [64] propose the
application of objective systems analysis to reduce the variable set in cases where the model is in form
of systems of equations. A parametric GMDH algorithm will be applied and a discrimination criterion
will decide on which of these equations should be used in the system. In that way a nuclei of the
dynamic variables of the system will be established. The variables outside the nuclei will be modelled
individually by parametric GMDH algorithms. The above procedure has been also known as the OSA
GMDH algorithm.

Generally, the identification problem can be subdivided into two other problems: the identification of
structure and the estimation of parameters. Bastian and Gasos in [91] examine the identification of
structure as two separate problems. The identification of input variables of the model (i.e. type I) and
the identification of the input-output relations (i.e. type II). GMDH algorithms can be applied for the
solution of type II problem as well as the parameter estimation. For the solution of type I problem, a
MLP network is suggested. All the inputs are fed to the network and the regularity criterion is
calculated. Then one of the input is replaced by a random signal and if the new value of regularity
criterion remains small the excluded variable is considered redundant and deleted. However, such
procedure is computationally demanding since every time the efficiency of one input argument is
checked the network should be retrained. In [92] an initial single training is proposed but the algorithm
may not always detect the redundant variables.

One of the features of inductive approaches is that the structural and parameter estimations are not
happening separately. Van Welden et al. [93] argue that such a procedure may cause problems in cases
of ill-defined tasks and it is better to distinguish these two operations. The “system approach problem
solver” (SAPS) is used to identify those variables that are closer to the output and then GMDH can be
applied to obtain the optimal model. The computation time is reduced with SAPS being a preprocessor
to find the structural relationships and GMDH serving the purpose of estimating the parameters and
obtaining a more refined structure.

Ikeda et al. [94] adopt a different approach for the selection of input vector. The input variables N are

chosen from a wide set of variables N0 according to the value of the mean square ( )2izy − where, y the

output and n
iiniiii xaxaaz +++= ....10  with x the input variable and n the order of a polynomial chosen

subjectively by experts. The proposed modification attempts to eliminate the weakness of linear
correlation coefficient to identify non linear relations however, Billings and Zhu [95] introduce higher
order correlation functions that are able to compensate for non-linear relationships.
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Inaccuracies in Parameter Estimation
The method of least square estimates is the most popular method to calculate the coefficients of partial
descriptions. If the data matrix is well defined its estimates will be accurate however, in the majority of
real world systems the data matrix is ill-defined and the least squares biased. Yaremenko [96] proposed
the utilisation of orthogonal Chabyshev polynomials to overcome it. Tumanov [97] pointed out that
“GMDH algorithm with mutually orthogonalised partial descriptions ensures stability of the model
structure as well as the estimates of its coefficient during the identification procedure of complex
objects with changing dependent variables”. The proposed algorithm allows the utilisation of
dependent variables in the set of experimental data, obtains estimates of all model coefficients and
perform adaptation of the model coefficients by refining their estimates over the entire sequence of
experimental points. Duffy et al. [85] propose the utilisation of stepwise multiple regression techniques
as well as the re-estimation of all the terms in the final equation using both training and testing set of
data.

The reasons of inadequacy in least square estimates are explained by Sarychev in [98]. According to
that the problem is based on the false assumption that the distribution of the error vector is normal and
the author argues that the assumption of a binary exponential distribution is more suitable. This
argument is justified by the different nature of the error distributions in different selected intermediate
variables, the simple structure of the partial descriptions in the first layer with respect to the true model
and the difference of the contribution of the individual descriptions in the previous layer to the total
change in the output of the current layer. The method of least moduli is introduced where noise
immunity is increased producing more stable and unbiased coefficients. According to that, the type of
partial descriptions is simpler and a direct monitoring of the complexity and composition of the terms
is used for describing the intermediate models. Ivanchenko et al. [99] propose the iterative least square
method as a more robust approach, which increase the noise immunity of GMDH algorithms. The
ability of least squares and instrumental variables method to produce unbiased estimates is tested by
Ivakhnenko and Zholnarskiyi [18]. They conclude that in case of noise free data or normally distributed
noisy data both of them produce good results but instrumental variable method is superior in different
conditions.

Multicollinearity
Another problem found exclusively in multilayer algorithm, which effects the stability of coefficients,
is that of multicollinearity. The selected variables in one layer may be highly correlated to those
selected in previous layers, which will result to the appearance of multilayerness error. Duffy and
Franklin [85] attempt to solve the problem by applying a stepwise multiple regression technique for the
formulation of partial descriptions in place of least squares. Svetal’skiy et al. [100] propose instead of
transferring in the next layer, the outputs of the selected partial descriptions to use the input arguments
that generate these outputs. Mamedov [101] follows a similar approach and describe constraints to
reduce complexity. The degree of polynomial and number of parameters in the approximating models
should not exceed a certain natural number controlling in that way its complexity. Additionally the
testing regions are narrowed so that the probability of finding a true model is increased.

The ridge regression analysis is another effective approach for stabilising the coefficients of models
and solves the multicollinearity phenomenon [102]. A similar approach is followed in [103] where the
ridge bias parameter is determined according to the data and the algorithm is called “adaptive GMDH”.
The optimum value of the ridge bias parameter is estimated by a special formula known as “the
generalised ridge estimator of the adaptive GMDH” but precautions should be taken to avoid the bias
phenomenon. Jirina [104] claims that the multilayerness error is caused by the polynomial form of
partial descriptions, which increases the error as the complexity increases. Sigmoid functions are
proposed for every generator of partial descriptions, which minimum and maximum value will be
assigned with respect to the spread of the output values. Ikeda et al. [105] in order to stabilise the
structure of the prediction model introduce an adaptive mechanism for estimating the coefficients of
the model every time new data are added while the structure of model is preserved. An additional
advantage of this procedure is the significant reduction of computation time.

Reduction of Complexity
Ivakhnenko [4] claims that if the number of selected models in every layer is as large as possible the
optimum model will be never lost. On the other hand, following that procedure the complexity of the
model as well as its computation time is increased. Triseyev [106] reduces the complexity of GMDH
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algorithms by following a different approach for the selection of intermediate variables, which is based
on the diversity of variables criterion and the structural number of partial descriptions. An intermediate
variable will be selected as optimum in layer K only if its performance on the diversity criterion of
variables is improved in the K+1 layer. In the final layer it is possible to have a set of optimal models
so that the structural number will select the single model. In case of multivalueness for the structural
number the minimum selection criterion will decide the optimum. The structural number is a binary
vector, which indicates the presence or absence of characteristic input variables in the partial
descriptions. Precautions should be considered for large input dimensions since it may become
computationally expensive. The applications of lower order partial descriptions or the combination of
low and high order equations can reduce the complexity. Parker et al. [69] in order to avoid an increase
of the model order use second order polynomial in the first layer but only linear forms in subsequent
layers. A pruning type technique is adopted by Dolenko et al. [107] where the final model is checked
and insignificant terms are reduced. Additionally, the requirement of normalisation of data priori to
GMDH is highlighted since unnormalised data were proved to produce worst results as well as
computational unstable models.

Multiplicative-Additive GMDH Algorithm
It was mentioned above that the form of partial descriptions might affect the model complexity. The
choice of partial descriptions is closely related to the field of applications [108]. The different types of
descriptions and different complexing methods have been driven in a wide range of GMDH algorithms.
Generally, partial descriptions of parametric polynomial models can be divided into four main
categories according to the combination of their terms. Additive where new terms are added to the
partial descriptions, multiplicative of unit power of factor, generalised multiplicative-additive and
descriptions where the power of factors is replaced by a number p which can be either prespecified or
not [109]. Ivakhnenko et al. [110] classify the GMDH algorithms with respect to reference function of
the system, proposing the development of an algorithm that is not based on the sum of polynomials
(e.g. combinatorial) but on the multiplication of polynomials of one variable. These algorithms are
characterised as multiplicative-additive GMDH since use both summation and multiplication of partial
descriptions. Multiplicative-additive algorithms have expanded the functional space of GMDH
algorithms but face the problem of unstable coefficients due to least square method. Least squares
method have been applied to the logarithms of their values after taking the powers but the minimum
mean square is not satisfied [111]. The introduction of multiplicative-additive algorithm with optimum
power factors has eliminated that problem [109]. Krotov and Kostenko in order to improve its accuracy
propose the expansion of input arguments by using fractional transformation of the original variable
[112]. The expediency of this modification will be decided by the decrease in the minimum of external
criterion. The algorithm include two steps where in the first step the powers of polynomials are found
by Combi GMDH and at the second step a complete sorting of the related models takes place. The
algorithm has been tested successfully in the prediction of ecological systems [87].

Formulas of Partial Descriptions
Despite the wide range of partial descriptions the majority of the researchers follows the argument that
Volterra series are capable of identifying any non-linear system and therefore have adopted polynomial
partial descriptions similar to Ivakhnenko polynomial [7]-[9]. However, due to the complexity of the
model and the requirement of including the theory behind the object, many modifications have been
designed in order to adapt to system’s properties. Duffy et al. [85] in order to i ncrease the spectrum of
partial descriptions in every layer, introduce the linear combination of all input variables as an
additional partial description to the second order polynomial. Ikeda et al. [94] proposed the
introduction of each input variable into a polynomial prior to their application in the partial generators
in the expense of increasing complexity. Additionally, the squared terms in the second order
polynomial are eliminated. The elimination of squared terms is also proposed in [103]. Similarly, Hara
et al. [113] propose a linear description of two inputs (i.e. constant term is not included) and then its
output will be fed to a second order polynomial. In that way, less than six data are required for the
calculation of its parameters however, it is pointed out that Ivakhnenko polynomial has a high degree
of freedom and is superior in fitting the input-output relations. In [84] an algorithm developed by Ihara
is presented where partial descriptions are replaced by a filter function and the second order polynomial
increasing the stability of long term predictions. Sarychev [98] proposes the exclusion of not only the
square terms but also that the product of the two variables creating partial terms with only two
unknown parameters. Ivakhnenko et al. [18] propose new short-term partial descriptions with quadratic
term, which need a small number of observations (i.e. three to four). However in case of noisy data it is



17

recommended to use five to ten times this number of points. Park et al. [39] propose a wide range of
partial descriptions like, linear, quadratic, cubic, bilinear, bicubic, trili near and tricubic.

Overfitting
A consequence of complexity is the overfitting problem and poor generalisation. The partition of the
data into two subsamples and the selection of the optimum model according to its accuracy on an
unknown set of data may ensure the good generalisation. However, the large number of parameters in
the final model could create overfitting problems and therefore techniques, which eliminate the number
of parameters, should be adopted. Mehra in [114] adopts the application of stepwise regression method
for parameter estimation that is capable of eliminating the multicoll inearity problem as well .
Additionall y, the Stern estimator is proposed for parameter identification but it is based on Akaike' s
Information Criterion. Hara et al. [115] propose the replacement of least squares by a BDS estimator,
which is similar to the weighted least squares (WLS) estimator. The BDS estimator needs more
computation time and therefore the WLS is finally preferred. Due to high computational load of both
BDS and WLS it is proposed to apply the least squares in first place and use a number of statistics (e.g.
chi-square tests, run tests, variance values of data, etc.) to guess the possibil ity of overfitting so that
switch to BDS only if it is high. Based on experiments the overfitting was not totally reduced but the
results were better [116].

Partition of Data
The objectiveness of GMDH algorithm is based on the utili sation of an external criterion to select the
optimum model, which require the partition of the data. The subsamples should cover the operating
regions of the system and have similar properties in order to avoid poor generalisation. The
requirement of split ting data into two groups will l ead to different models for different subsamples and
researchers have investigated a number of techniques to overcome it [97]. A simple technique will
include the most recent observations on the checking set with the rest data being in the training set.
Another technique may involve the variance of the data, where a mix of low and high variance data
will be included in both subsamples. Duffy et al. in [85] propose two different approaches, which
ensure a proper distribution of the data in both sets. The first suggest a fixed selection of pattern such
as putting alternative points in time in the training and testing set. The second ensures a better spread of
data and based on a random function which binary output (0–1) will indicate the data used in the
training and checking set. Muller [49] and Yurachkovskiy [84] introduce an alternative approach,
which is appropriate in ill -defined objects with limited number of observations. According to that all
the data are used in the training and checking set following the principle of cross-validation and the
averaged regularity criterion will decide on the optimum model.  Jirina [104] based on the conclusions
driven in [70] proposes the util isation of PSE criterion that can be expressed as a function of the trained
squared error. In that case the iterative procedure will t ake place until the minimum of PSE is found.
Ivakhnenko in [117] claims that the subsmaples of data should be as different as possible since that
ensures the deepest minimum for the external criterion. The superposition of noise in the initial data is
introduced to change the nature of data and increase the noise immunity of model.

Low Accuracy in GMDH Method
All these modifications have been tested and proved to improve the accuracy of GMDH. However, in
many cases and particularly in applications of long range prediction the GMDH was inaccurate.
Ivakhnenko in [118] recognising this failure of GMDH, summarises its causes in the existence of a
short delta form correlation between output and predictors, the insufficient functional variety of the
model candidates, the immoderate use of a sequence of external criteria for choosing the optimal
complexity and the overcomplication of individual models. In addition, GMDH has been primary
developed for the solution of small and modest problems, which is not the case for real world systems.
The application of correlation analysis prior to GMDH algorithm as well as the development of a
combined criterion in the place of external criterion could solve these problems and therefore improve
accuracy.

Molnar in [119] justifies the low accuracy to the loss of correlation information between elementary
polynomial during the estimation of coefficients. The re-estimation of the optimum parameters using
the whole amount of data and the utili sation of Akaike’s selection criterion to remove unnecessary
coeff icients is proposed. This method is also known as “extended Kalman filtering” which basic idea is
similar to Newton’s theory where small adjustments to the coefficients are made until convergence is
obtained. Another cause of low accuracy is the possibili ty of eliminating important variables during the
sorting out procedure. GMDH is geared to minimise the mean square error of the resulting model so it



18

takes into account average tendencies only. Any variable, which causes the function values to fall out
that average tendency will be characterised as noise and therefore eliminated despite its importance.
Styblinski et al. [120] propose the combination of a theoretic model and an inductive modelling
approach as a proper solution to the above problem. A single layer interpolation technique known as
“maximally flat quadratic interpolation” is proposed to produce a physical model for a circuit
performance system. However, due to the high complexity of MFQI models a combination of MFQI
and GMDH is finally chosen. According to that the input parameters and the output of physical models
are fed in a GMDH algorithm where GMDH will select the best input variables and correct the physical
model. In the application of GMDH algorithm the variables are trasfmormed by a second order
polynomial or a bilinear logistic function prior to their introduction in the partial generators in the form
of a rational function is used as partial generators [108].

 GMDH Algorithm for Discrete Process
The majority of GMDH algorithms has been developed for continuous variables and cannot be applied
to binary or discrete problems. A rebinarization technique, which will be used for the transition from
binary to continuous attributes with the subsequent use of well known GMDH algorithms, is a potential
solution. Ivakhnenko et al. in [121] introduce such an algorithm, which reconstructs with a sufficient
precision an unknown harmonic function that is represented by a binary code. The sliding control
criterion is applied to improve the parameter estimation since least square estimations sometimes
provide imprecise estimates. An extensive review of such algorithms can be found in [122]. The
harmonic rebinarization or rediscretization algorithm can be also applied to discrete pattern recognition
problems allowing the application of parametric GMDH algorithms to find the optimum space of
features, the structure of a decision rule and estimate its coefficients [45].

Model’s Validation
A very important subject in every modelling procedure is that of model validation. It is significant to
ensure that the selected model is adequate to reflect the causal relationships between input-output.
Muller in [49] proposes the computation of the model with and without randomisation as one of the
solutions to that problem. On the other hand, Krotov et al. [87] present a number of criteria, which can
prove the verification of the forecast. The correlation coefficient, the mean square error S of the
forecast and the mean squared deviation �  of the predicted process from the mean value of the entire
series of observations (norm) can be used. In that case the reliability of the model could be
characterised by the ratio S/ ���

Problems with Combi-GMDH Algorithm
Combinatorial GMDH algorithms in addition to the above drawbacks appear to have a high sensitivity
to computation time. Muller et al. [123] propose two ways of speeding the sorting out procedure. The
first one suggest the utilisation of information array in the formulae of WT W instead of the data
sampling area W=(XY) (i.e. X is the input vector and Y the output). The second propose the
calculation of parameters with a recursive method of “framing”. Ivakhnenko et al. [46] propose an
alternative approach for the reduction of its computation time. According to that it is proposed to range
variables with respect to a criterion during the complete sorting of models after a number of layers. In
that way only F best variables will continue in the sorting out procedure until the minimum of criterion
is achieved.

Ivakhnenko et al. [124] claim that Combi algorithm fails to produce the optimal non-physical model
when the data are exact. The reason is the inability of external criterion to produce a single minimum.
The criterion will produce an “uncertainty zone” where the optimal physical model corresponds to its
midpoint. In that case a simplified non-physical model can be only found by searching for a model
according to some external or internal criteria in that flat uncertainty zone. A threshold GMDH
algorithm can solve the problem of exponential increase in computation time where an auxiliary
criterion estimates the effectiveness of input variables.  The effectiveness of continuous variables is
estimated according to the absolute value of the correlation coefficient of the output variable and the
feature to be estimated. On the other hand in the basic GMDH algorithm, the number of variables over
which the external criterion search is performed is either constant (for exhaustive search) or reduced
when adding new terms at the expense of eliminating non-effective inputs.

Genetic Algorithms in GMDH
Recent development in some of the GMDH aspects has involved the concept of Genetic Algorithms
(GA). Robinson [125] points out that disadvantages of GMDH are its fixed structure and the
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deterministic nature of the search for the best model. She uses MOGA optimisation algorithm to search
the space of possible polynomials in order to optimise the performance of GMDH. The Ivakhnenko
polynomial is replaced by a full four order polynomial and GA is used to identify the optimal partial
description. The above modification have been characterised as Term Optimisation of GMDH
(TOGMDH) since it only finds the optimum terms in partial descriptions and does not alter its
structure. Robinson also proposed the Structure Optimisation of GMDH (SOGMDH), which optimises
both the model’s terms and the structure of the final model. In that algorithm, MOGA optimisation
algorithm performs a wider stochastic search over a large range of possible models. SOGMDH uses the
form of partial descriptions in TOGMDH but allows the evolution of the model in more than one layer
allowing in that way the combination of two different partial descriptions in a latter stage. Both
algorithms have been tested in regression and classification tasks where SOGMDH has shown a
remarkable increase in accuracy.

7. Applications of GMDH Algorithms

The inability of deductive algorithms (neural networks, statistical models) to perform highly accurate
identification and forecasting tasks has urged the development of other methods, which require less a
priori information. Inductive sorting out procedure requires a small volume of a priori information for
the system producing non physical models, which can approximate the ill-defined systems in a simpler
and more accurate way than physical model do. GMDH algorithms as representative of inductive
procedure have been modified in order to improve their performance and adapt on the peculiarities of
every different object. Ivahnenko et al. [71] provide a long list of problems where GMDH has been
successfully applied. Modifications in GMDH, which ensure the solution of some problems in these
fields of applications, are also introduced.

Financial Systems
One of the preliminary areas of research where GMDH have been tested is the identification and
forecasting task of financial systems. Macroeconomic systems have a limited number of observations
and a dynamic behaviour, which cannot be identified by conventional methods. Scott et al. [126] claim
that these methods fail, since they are not able to propose an objective technique for the selection of
input argument, these systems are extremely non linear and methods are unable to take into account the
minor interactions of their variables. GMDH on the other hand seems to address these problems and its
performance is better in comparison to known economical systems. [96], [126], [127]. Ivakhnenko and
Kostenko design a GMDH algorithm for long range predictions of the British economy. The principles
of objective systems analysis have been applied to identify the optimum systems of equations. The
algorithm is a two-level performing both annual and seasonal predictions. The number of equations in
the system is defined by a discrimination criterion known as the criterion of accuracy of stepwise
prediction. The criterion should be calculated on a different set of data because when exhaustive search
is performed (i.e. combinatorial algorithm), it is transformed to an internal criterion selecting the more
complex model [128], [129].

Brusilovskiy et al. [130] classify the prediction of economic indices into two categories. In the first
group there is a partial description where information regarding only the dynamics of the predicted
indices is used. Secondly, in the system prediction the dynamics of other indices, which interact with
the predicted one may also be used but could be poor due to the incompleteness of input vector.
Goleusov and Kondrasheva in [131] investigate the ability of GMDH to extract possible information
about the interdependencies between the financial indices of the countries and therefore their
economical systems. They conclude that GMDH is more than a simple modelling method and expands
the possibilities of contextual interpretation of the results of economic modelling. Ivakhnenko et al.
[132] apply a combination of two parametric GMDH algorithms in modelling macroeconomic models.
Firstly OSA algorithm is developed to create nuclei of the system and then the Combi algorithm is
applied to those variables outside the nuclei.

However, based on Nalimov’s statement that models with a more fuzzy language should describe
system with fuzzy characteristics, the utilisation of non-parametric GMDH algorithms is very common
[133]. GMDH algorithm as a modelling and prediction approach can be also successively included in
the development of integrated portfolio trading system. Lemke and Muller [64] in a first stage apply
parametric and non parametric GMDH algorithms to the prediction of a portfolio of shares while in the
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second stage they design a control process, which involves the transformation of the prediction into
trading signals. Water et al. [134] are also applying the GMDH algorithm in the prediction of stock
prices. F-statistics have been used as selection criteria but their sensitivity to the partition of the data
sample effects their reliability. Their combination with the training score, which represents the number
of times that the GMDH network correctly predicts the movements of the stock price in the training
interval, is proposed as a potential and more effective selection approach.

Ecological Processes
Another area of modelling where GMDH algorithms have been popular is ecological processes.
Generally, most of these processes are highly non linear with noisy data and statistical models fail to
produce accurate results. Dolgopolov [135] proposes a combined method of the principle of inductive
self-organisation and physical laws for the mathematical formulation of general dynamic models
describing the evolution of the magnetic field of active solar regions. The optimal structure of the
model is determined by the GMDH on the basis of a complete description in the form of a system of
differential equations (i.e. the analogue of differential equations in GMDH is difference equations) of
magnetohydrodynamics and a source function which takes into account forces of a potential nature.
The concept of predicting the solar activity is discussed in [60] where both harmonic GMDH and the
method of analogue complexing are discussed. The method of analogue complexing as a more robust
approach is producing best results. Due to the long history a single analogue is found to produce more
accurate results in comparison to the combination of analogues.

Krotov et al. [87] apply the multiplicattive-additive GMDH algorithm for the prediction of tree-growth
rings while Valenca and Ludermir [47] compare the Box-Jenkins approach with neural networks with
active neurons for the forecast of daily river flows. It was proved that NN with active neurons rise up
the accuracy of short-term forecast and hence increase the lead-time of step by step long term forecast.
Chang et al. [136] are dealing with another important ecological problem, the flood forecasting. A
stepwise regression similar to the one introduced by Tamura and Kondo in [72] is proposed to tackle
the multicollinearity problem and the algorithm is known as SGMDH. Additionally, a new recursive
algorithm introduced by Catlin [137], which reduces computation time and estimates the coefficients at
each step in an adaptive way is proposed for real time forecasting. The latter algorithm is known as
RESGMDH and perform better in cases where the rainfall histograms between calibration event
(training data) and verification event (testing data) are significantly different.

Control Applications
The inductive sorting out approach has been successfully applied in parts of control applications also.
Kozubovskiy and Kupriyanov [138] apply the multilayer GMDH to calculate the pressure difference at
the output of a differential pneumatic bridge. The bridge is part of a general pneumatic system, which
controls the air environment inside a mine. Furthermore, GMDH can be applied for the calculation of
optimum values of variables of Quasi-open loop systems. Many macroeconomics systems have long
term feedback effects so researchers are forced to perform open-loop control looking at the optimal
decision for each given year or quarter of economical planning. The available data can be divided into
three subsets, the input manipulated variables, which optimal values should be found, the external input
variables and the output values, which optimal values are known. The GMDH algorithm involves three
steps where we have the calculation of deflection between the optimal reference value of the output and
its real value, the development of Combi GMDH to obtain model of constraints and the solution of the
systems of equations obtained by Combi. Ivakhnenko et al. [139]-[140] claim that when the number of
manipulated variables and output variables is equal instead of using simplex method or other non linear
programming optimisation technique, the optimal values for the manipulated inputs can be solved by
simply solving a system of linear equation provided by Combi GMDH algorithm. The above concept is
extended in [141]-[142] to cover the cases of dynamic objects, also. The proposed technique is
simplified by avoiding complex non-linear programming methods and uses GMDH algorithms for the
computation of the parameters of the equation for the constraints.

GMDH in Diagnostic Tasks
Expert systems have been designed for the development of advisory systems, which assist in making
decisions in technical diagnostics tasks. However according to Kus et al. [143] their performance is
poor due to the difficulties in formalising in a mathematical language the experts’ knowledge, the
mathematical transformation is not as good as pure expert knowledge and particularly in diagnostic
tasks the input information is limited. A computerised-aid decision system is proposed that will
overcome those problems and will be used for real world systems of high complexity, incomplete data
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information where the information of their behaviour is coming solely from observations and the
transformation of human knowledge is difficult. The proposed diagnostic system uses cluster analysis
to accumulate and represents the knowledge as well as parametric GMDH algorithms, which will
estimate the output of particular variables that play the role of a state identificator. The difference
between the predicted value of the state identificators and their actual values will indicate an
emergency state for a particular element of the investigated system [144]. The proposed system is
expanded in [145] where the case of dynamical systems is considered. In that case the time t should be
included in the partial descriptions of GMDH algorithm for continuous variables or past values of the
target for discrete variables.

Other Applications
GMDH algorithms have been successfully designed in many more identification and forecasting
process like the case of rare processes where combinatorial GMDH is successfully applied in
connection to the average regularity criterion due to the limited number of observations [146]. GMDH
algorithm has been also applied to the optimisation of physical model’s structure and estimation of
their parameters in agricultural systems [147]. Random processes in the form of a trend function and a
remainder have been successfully modelled with GMDH algorithms [148]. The GMDH algorithms are
used in both the trend and remainder identification task. Buttner et al. [149] apply the principle of self-
organisation in the extremely complex process of predicting the rate of births in a country (i.e. fifty
factors may effect the demographic process). Sarychev [150] developed an iterative GMDH algorithm
for a number of processes, which models constitute a superposition of two dimensional beta
distributions where the coefficients and factors are unknown. In this case the development of Combi
GMDH is unacceptable due to the large amount of admissible combinations of the model parameters.

Due to the chaotic behaviour of most climate systems, Lin et al. [151] propose the combination of
GMDH and chaotic theory as a more appropriate method for the prediction of the mean temperature in
two cities in China. The new algorithm is known as Group Method of Phase Space Component have
the same advantage as GMDH and enables the adjustment of the selected model by the appropriate
choice of some of its parameters. GMDH algorithms have been also designed for the identification of
bilinear models in [152]. It was proved to be computationally demanded but produce better results
when the structure of bilinear model is unknown however, a proposed bilinear predictor was superior in
cases where the model structure is known a priori. Iwasaki et al. [153] introduce an autonomous
modelling strategy for the non-linear friction on the table motion. Using GMDH in place of NN, an
optimal non-linear model is found without requiring the knowledge of the exact friction properties.
Modelling the friction allow the achievement of higher motion performances since the table motion
accuracy is effected by the friction. Xue and Watton [154] design a GMDH type NN to model fluid
power systems. Due to unstable result from the second order polynomial for every pair of variables
they applied it for every set of three variables. Based on their results it is clear that GMDH network
performs well producing more accurate models.

Software Packages with GMDH Algorithms
The wide application of GMDH algorithms has urged a number of researchers to design software
packages, which enable the development of one or more GMDH algorithms. Semenov and
Malinovskaya [155] proposed the software package “PARIS”, which combined the Brandon’s
algorithm and GMDH theory. It is a multi-step procedure where Brandon’s algorithm is firstly used to
isolate the most significant repressors and Combi GMDH algorithm to find their optimum complexity
polynomial. Then the residual component vector of the output variable is calculated and the next set of
remaining repressors is identified. That procedure is repeated until all the input arguments have been
used. The final model will be the sum of all these optimal polynomial. Tetko et al. [156] developed a
software package suitable for Quantitative Structure Activity Relationships studies (QSAR). These
tasks are characterised by limited observations and a large number of input variables with some of
them irrelevant and highly correlated. Krotov et al. [157] describe the main parts of a computerised
package for the modelling procedure of complex systems while Lemke in [158] designs a software
package for the revised GMDH algorithm. An important feature of that package is the precautions
taken by the designer in order to increase its accuracy. Firstly it is avoided to select only a number of
intermediate variables in every layer and exclude other with the same value of selection criterion.
Secondly in case of system of equations it is avoided to include variables in the equations at the same
time t.
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 Muller and Lemke [133] propose the “KnowledgeMiner”, which is a self-organising modelling
software tool. It is a powerful and easy to use modelling tool that is designed to support the knowledge
extraction process on a highly automated level [67]. It is able to implement advanced self-organising
modelling techniques like multilayer GMDH, NN with active neurons and analogue complexing
method [159]. The “KnowledgeMiner” has been successfully applied in financial systems for
predictions tasks or decision systems like the design of a system responsible for the decision over the
solvency of a company [67], [160].

8. External Criteria

The objectiveness of GMDH theory in the selection of the optimum model is based on the principle of
external complement, according to which when a model’s complexity increases then certain criteria,
which hold the property of external complement go through their minimum [4]. Failure to achieve that
may be caused by the existence of too noisy data, incomplete information in input arguments and
improper choice of reference function. All these criteria that satisfy the above property are known as
external in contrast to internal criteria, which have a monotonic behaviour choosing the model
according to the degree of complexity following the property “the more complex a model is the more
accurate will be” [1]. Generally, the modelling procedure may involve either exact or noisy data and
the choice of criterion is based on the level of noise within the data. Ivakhnenko [32] points out that
both external and internal criteria will choose the same model when the data are exact but their choice
will not coincide if the level of noise increases. Internal criteria require supplementary information
about the statistical characteristics of the data sample increasing the subjectiveness of the choice [148].
They can only choose physical models that can be used explicitly in short range predictions while
external criteria are choosing non physical models that are less complex and more accurate in long
range predictions.

A wide variety of external criteria exist and their choice depends on the type of the problem, the level
of noise and the designer. Ivakhnenko [161] divides the external criteria into three categories: (a) exact
criteria, (b) integral criteria like time-integral of exact data and (c) differential criteria. Long data
sample can successfully apply exact criteria however, for short samples a more robust approach should
be followed and differential criteria are preferable. Exact criteria are choosing models that are the most
accurate in the given sample of data in contrast to differential criteria, which choice is based on the
principle of consistency selecting a consistent model that does not depend on the given part of samples
[162]. Obviously exact criteria will be appropriate to short range prediction while consistent criteria
will provide models suitable for long range predictions.

Regularity criterion has been the main representative of exact criteria. Mehra [114] illustrates two of
the main problems of regularity criterion and GMDH in general. Firstly, there are not clear rules for
selecting the number of data points in each subsample and secondly the requirement for partition of
data into two sets may cause problems in short sequences of data. Yurachkovskiy [84] in order to solve
the above drawbacks proposes the averaged regularity criterion, which use all data in both training and
checking set of data. On the other hand Goleusov et al. [131] present the symmetric regularity criterion
to construct regular models which are slightly sensitive to small variations in the initial data. Sarychev
in [163]-[164] produces a theoretic background for the regularity criterion and symmetric regularity
criterion. It is proved that following the scheme of repeated observations for the partition of the data
sample the regularity criterion as well as the symmetric regularity criterion hold the two basic
properties that GMDH theory requires in order to be classified as external criteria. According to those,
their mathematical expectation has a minimum that is attained for some small variances of the
observation error on the actual structure and that shifts when the variance of the observation error
increases in the region of simpler models.

Despite the ability of regularity criterion to satisfy the basic properties of external criteria it has the
disadvantage of depending on the partition of the data. Sarychev [165]-[166] proves that indeed
regularity criterion depends on partition of the data and therefore there is a problem in identifying the J
optimal set of regressors in general and not for a specific set of data. A J optimal set of regressors is a
group of regressors between a number of candidates, which in terms of contents and number
correspond to the true model. It is proposed that the repeated scheme of observations may be the
answer to the problem of partition of data and a new form of the regularity criterion seems to be able to
identify it.
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The problem of data partition have urged researchers to develop a more robust modelling approach
where the choice of selection criterion will be as less as possible relevant to the given sample of data.
The minimum bias or unbiasedness criterion was one of the first criteria following this robust approach
[4], [114]. Aim of such criterion is the solution of one of the main problems in regression analysis,
which is the choice of the most unbiased structure [167]. In case of multi-output systems or multi-level
algorithms the balance of variables criterion is the equivalent to consistency criterion [118].
Ivakhnenko et al. [5] present different forms of consistency criteria according to the number of division
of data space. However, in these types of criteria there is an imperfection of the mathematical form,
which leads to a multivalueness problem. Consistency criteria may have more than one model with the
same minimum value and the extraction of the true one amongst several fakes is necessary. In order to
solve that problem the principle of regularisation should be applied. Ivakhnenko et al. in [5], [161]
introduce two approaches that will identify the true model. Firstly it is proposed to sort the variants
under the sum of a number of different consistency criteria applied in different partition of data sample.
Alternatively, in cases of systems of equations the external equation will be calculated every time a
new equation is added to the system and the extrapolation of the characteristics created by the
minimum values of the criterion will indicate the true model. The extrapolation of that characteristic
will indicate the true physical model.

Stepashko in [168] investigating the theoretic background of consistency criteria highlights four of
their shortcomings. They tend to select simplified models, have a low selectivity due to their
multimodal nature, are sensitive to the segmentation of data and finally face the multivalueness
problem. The source of all these shortcomings is that consistency criteria do not consider the error of
reproduction of the original data. According to Stepashko the problem of low selectivity could be
solved by applying a new consistency criterion based on the partition of the data into three subsamples.
This criterion will be able to look beyond the limits of estimation intervals and could find the best
predicting model. However, the most appropriate solution to overcome all these shortcomings is the
application of a combined criterion. Ivakhnenko et al. [51] claim that the problem of regularisation is
effected by the level of noise within the data so that the more accurate the data are, the wider will be
the ellipsoidal region of the locus of points of the minimum of a criterion which value is zero. In order
to solve it, is proposed to the superposition of noise in the data sample. The noise will be random and
with a large variance we shall be able to obtain a unique solution.

The properties of both regularity and consistency criteria have been investigated by Stepashko in [169]
according to which as the variance of noise in the data increases consistent criteria tend to shift their
minimum into simpler models proving in that way the applicability of Shannon’s theorem in
communication. However, in [170] where the asymptotic properties of six discriminating criteria are
examined it is proved that in case of infinite number of data by plotting the graph complexity vs.
regularity criterion its behaviour is monotonic without a clear minimum so it is proposed to interact
them with precautions in case of very large set of data.

The limitation and problems of single criteria have indicated the introduction of combined criteria. The
application of combined criterion will answer some problems of the individual criteria as well as
combine both their properties. This procedure have been initial proposed by Tikhonov who claims that
the choice of models should be done according to a differential (consistent) and accuracy criterion [51],
[117]. Mehra in [114] proposes the utilisation of either regularity or unbiasedness criterion as auxiliary
criteria first to indicate models that approaches to the optimum and then the application of balance of
variables criterion as the final criterion to obtain the best discrimination between the candidate
solutions. Additionally, he introduces the BIC criterion that is better than AIC for the improvement of
GMDH reducing the number of parameters.

A number of different proposals has been made for the composition as well as the order of the
subcriteria. Ivakhnenko [4] claims that their composition depends on the nature of the problem and the
type of models. The application of unbiasedness plus regularity criterion is proposed for polynomial
models in short range prediction without time variable. Harmonic and algebraic (polynomials) models
for long term prediction with time variable should be identified by the unbiasedness plus the balance of
variables criterion. Finally, for differential models (i.e. their analogue is finite difference models) in
which long-term prediction is obtained by multistep integration, the unbiasedness plus stability of the
prediction procedure criterion should be adopted. The choice of optimum model will depend on the
indication of the non dominant solution in the plane of the two criteria. In case of long range
predictions Ivakhnenko [32] is also proposing the combination of minimum bias criterion and the
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criterion of stepwise prediction which is calculated on the entire interval of data. The advantage of the
latter criterion is its ability to remove the bias of the parameter due to least square method.

Another important issue is that of the order with which the criteria should be used. Ivakhnenko [148]
connect their order to the noise immunity of the individual criteria. The less noise-immune criterion
should be used first and the more noise-immune should follow. The consistency criterion should be
applied in the beginning but due to its low noise immunity [168] must be followed by an auxiliary
criterion like the regularity criterion, the criterion of accuracy of prediction, the integral criterion or the
symmetric regularity criteria. Additionally, the number of optimal models to be chosen by the first
criterion and being subject to sorting by the auxiliary criterion is not clear. An alternative technique,
which eliminates that problem allowing the simultaneous application of both criteria, is given in [13].
In that case the combined criterion will be a weighted sum of both criteria. However, the choice of
appropriate value for weighted coefficient is not clear increasing in that way the subjectiveness of
choice. In both cases there is the problem of the optimum choice for either the number of models or the
weighted coefficients, which will also effect the final choice. Stepashko [168] in order to solve the
problem of optimum number of models selected by the consistent criteria propose a simpler approach
that includes the application of consistency criteria first by selecting all the model, which criteria value
is smaller than ten times its minimum value and then apply to them a regularisation criterion.

Zaychenko et al. [40] propose the introduction of weight factors in front of the regularity criterion,
which values should be within a range [0 1]. Different values of this factor are tested in different initial
training data giving a permissible domain for the values of weight coefficient. The choice of regularity
criterion for short range prediction is based on the assumption that good approximation in the past
guarantees the good approximation in the immediate future. Chang et al. [136] propose the utilisation
of more than two criteria in the combined criterion. The choice of optimum values corresponds to the
minimum value of the objective function of three criteria. The objective function is a weighted sum of
the three criteria with the weights to be allotted so that all of them have about the same level of
influence (weight) in the final choice. A similar approach was followed by Robinson [125] where the
MOGMDH is presented. According to that the Pareto front of all the selected models is found and all
these models will be considered as optimum in the final layer. However, this procedure does not result
in a final solution but rather a set of solutions, which final choice will be highly subjective.

In analogy to parametric modelling methods both external and internal criterion can be used in
clusterization but internal criteria will select complex clusters without forming a minimum and
therefore exclude the possibility of determining a unique clusterization of optimal complexity.
Ivakhnenko [53] argues that in clusterization, accuracy and consistency are totally different things and
the property of consistency is more important so the consistency criterion should be used in all cases.
In analogy auxiliary criterion could be developed to solve the “non-final” problem. The utilisation of
balance of variables criterion is proposed when the data sample do not allow its partition into two
subsamples [57]. Ivakhnenko et al. [162] claim that the problem of regularisation could be solved by
the balance of discretization criterion. According to that, the clusterization is repeated for some
intermediate number of levels choosing the clustering with the minimum value of the criterion. In case
of applying the consistency criterion in clustering the regularisation problem can be overcome by
“inverting” certain dipoles and calculating the overall crit erion of consistency.

The requirement of external criteria for data partition in GMDH restricts its application to
underdetermined tasks of experimental system analysis. In that case the length of data is small and
partition is forbidden. The concept of cross-validation could be viewed as a powerful tool to overcome
such problem. The balance of variables and PESS criterion could be applied successively in that cases
[171], [49].

Despite the application of exact and consistent criteria in the majority of the cases a number of
alternative criteria have been designed by researchers. Most of them are suitable for particular
applications taking into consideration special conditions of the individual tasks. Braverman et al. [172]
propose a matrix condition criterion for the selection of best models in basic multilayer GMDH. It is
proved that the threshold of the condition number of the normal equations is based not on the computer
resolution but to the reliability of the original data. An increase in error variance lead to reduction of
condition number while an increment of the output measurable interval leads to its increment.
Ivakhnenko et al. [16] show that the characteristic “selection criterion vs. complexity” for the
multilayer GMDH algorithm with calculation of remainders has a monotonic behaviour and the “rule
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of left angle” will dete rmine the optimal complexity. However, this choice will be always more
subjective.

The application of different criteria in the modelling procedure will produce contradictory solutions
and therefore experts should make the final decision. Silov et al. [173] design a linguistic criterion that
takes into consideration that knowledge and its choice will be based on the maximum of the fuzzy
measure of closeness to a hypothetical or utopian model. Belogurov [174] designs a criterion that
classifies the model into two categories those that are accurate and good for forecasting and those that
are not. This criterion is essential to objective systems analysis (OSA) algorithms or for the creation of
nuclei of input variables. The criterion will provide a boundary that separates the models into two
classes with respect to their informational base. Any model with a value larger than the predefined
boundary should be excluded by further investigation. The value of boundary is based on the
application itself and the level of required accuracy. However, a value of 1 is used in most cases. A list
of similar criteria can be found in [1] and [170].

Hild et al. [175] divide the selection criteria into two main categories. In the first category all the
criteria that require partition of the data are included while in the second the “information criteria” that
do not require such partition. Ivakhnenko [10] claims that strictly speaking any criterion that do not
require partition of the data sample cannot be considered as external and in that case there is no GMDH
method. Such criteria require either the assignment of some parameters increasing their subjectiveness
or are too crude and therefore forbidden. The only exception in that case is for the underdetermined
objects where the cross-validation concept would be applied. However, Hild and Bozdogan point out
that such criteria eliminate the drawbacks of regularity criterion like its sensitivity to outliers and their
ignorance of models complexity while taking into account parametric and model uncertainty. AIC
selection criterion is the first such criterion selecting the optimum model among a number of
competitors by using the information quantity as measure of goodness of fit. Nagasaka et al. [34]
proved that both AIC and cross-validation criteria would be able to identify the optimum model.
According to Hild and Bozdogan the failure of finding the optimum model may be caused by the lack
of fit, the lack of parsimony or the profusion of complexity. AIC is capable of compensating for the
first two only and proposes the other criteria that could compensate for all these reasons. Based on the
information-theoretic statistical theory they introduce the ICOMP and ICOMP(IFIM) that take into
account both parametric uncertainty as well as complexity, eliminating the need for division of data
sample. Muller et al. [1] point out that many times variables with the necessary information may be
rejected because of weak interrelations to the output as well as variables with repeated information
being inserted into the models. Common criteria fail to identify such situations and therefore the
“Innovation-Contribution” crit erion in order to select independent variables automatically should be
considered.

Lange in [176] proves that GMDH multilayer algorithms force the problem of bias in the coefficients
when the Residual Sum of Squares (RSS) is used as structure criterion. A new structural criterion that
will compensate for the existence of bias is designed. The new criteria is known as “Local Data
Uncertainty Criterion” (LDUC) and is a combination of two different subcriteria Q 1 and Q2 with the
first corresponding to the precision and the second to bias. This criterion is able to describe the
resistance of the evaluated output and the resistance of the evaluated coefficients against changes of
data values at a fixed given data set. The value of Q1 will be larger when irrelevant inputs are included
and the value of Q2 will be larger in case those essential variables are omitted. Finally, Dolenko et al. in
[107] apply the “coefficient of multiple determination R” as the selection criterion in multilayer
GMDH. Mueller et al. [133] present a comprehensive table of the most common criteria in the
parametric GMDH algorithms. These criteria are distinguished into two groups according to their
feature of partition of the data sample. Both categories can be found in tables 2-3.
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Table 3: Criteria of selection using training and testing data sets (NA and NB)

9. Conclusions

GMDH theory has been introduced to the scientific community in late sixties but it was the last two
decades that it was thoroughly explored and expanded. A huge amount of research is undertaken in
Russia and Ukraine where new algorithms as well as their theoretic base are established. The wide
range of applications have confirmed and strengthened its position as a non linear modelling technique.
Despite the contradictory results between neural networks and GMDH in some cases, it is no
exaggeration that GMDH can successfully replace neural networks in identification and forecasting
tasks. Its ability to address most of neural networks drawbacks have established her as a successful
rival in modelling procedure of real world systems.

Recent developments in GMDH theory like neural networks with active neurons and the introduction
of the concept of evolution (GA) have improved its accuracy and successfully address some of its
disadvantages. However, both of them have not been thoroughly explored and further investigation is
demanded. Additionally, most of the research in the selection criterion has focused on single objective
optimisation, which is rarely the case in real world systems. It will be more appropriate to say that the
optimisation of structure should take place according to a number of conflict objects in a
multidimensional space and therefore multiobjective optimisation techniques should be explored.
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